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Abstract

The feasibility of using dataflow systems for running complex graph queries is studied in this
paper. A general query optimization framework for parallel dataflow systems is also proposed. The
proposed methods are used to optimize a suite of benchmark queries, and their effectiveness is
evaluated. The performance of the optimized queries is measured on an actual parallel dataflow
machine using a large semantic graph and compared to that of equivalent SQL queries on a high-
end parallel relational database system. The study has revealed that dataflow system can achieve
significant performance improvement over state-of-art database systems and can be a viable and
scalable alternative to run large complex graph queries.

1 Introduction

Semantic graph analysis has become an increasingly important problem in recent years and plays a vital role in
counter-intelligence, bioinformatics, business intelligence, and web mining, and so on. A semantic graph consists
of typed vertices such as person and organization and typed edges that represent the relationships between the
vertices such as works for and visit. Vertices and edges also have attributes associated with them (e.g., name
and date of visit).

Semantic graphs, which are usually formed by fusing fragmental information obtained from many different
sources like web documents, news articles, and public records, have very complex structures. The semantic
graphs also tend to continue to grow in size, and it is not uncommon for scientists and knowledge engineers to
deal with semantic graphs with billions of vertices and edges in practice. The large size and complexity of the
semantic graphs, unfortunately, make the semantic graph analysis an inherently difficult problem. Furthermore,
many of the queries performed on real-world semantic graphs are very complicated with high-order complexity
and generate a large volume of intermediate results [10, 19, 17, 16, 14, 15, 4]. This makes analyzing large semantic
graphs in a scalable and efficient manner even more challenging.

Graph data is commonly stored in conventional relational databases mainly due to their availability and ease
of use. However, using relational databases to run graph analysis applications can have significant impact on the
query performance, since the complicated graph queries often have to be implemented using a set of expensive
SQL operations. Their inability to scale becomes evident when the graph queries are executed on very large graph
data [10]. In addition, the SQL query performance is hard to optimize, because how an SQL code is translated
into underlying primitives is largely opaque to users and varies widely from one SQL compiler to another. These
limitations of the relational databases as a graph analysis engine warrant investigation of alternative systems for
the scalable semantic graph analysis.

Dataflow, whose inception dates back to the sixties [8, 11], is a simple and powerful model of parallel compu-
tation and has been widely used in many areas of computer science, including programming languages, computer
architecture, and signal processing [13]. In dataflow architecture [6, 7], there is no single locus of control and
the computation is driven by the availability of data, naturally enabling asynchronous data parallelism. The
simplicity and inherent data parallelism of the dataflow model has prompted the use of the model to solve a wide
range of web applications in recent years [5].

Motivated by the advantages of the dataflow model, we investigate the potential use of dataflow systems as
a platform to run complex queries on large graphs. We first propose a set of techniques that can be generally
applied to optimize the performance of complex graph queries. These techniques can be collectively used without
any negative performance effect and therefore enable automatic query optimization, which can be particularly
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useful when a graph query language [3, 9] is used to write user queries. Also, these optimization methods can
be used as a set of guidelines to write efficient and scalable graph analysis applications.

The performance of graph benchmark queries [10, 21], which are optimized by applying the proposed tech-
niques, is then measured on an actual dataflow machine using a large real-world graph and compared to that
of equivalent queries on state-of-art SQL machines. The performance study shows that dataflow system that
optimizes its performance by taking advantage of the inherent data parallelism of the dataflow model and offers
a large degree of flexibility for users to optimize their queries can achieve significant performance improvement
over the state-of-art parallel relational database systems and serve as a viable platform for the scalable graph
analysis.

The paper is organized as follows. Section 2 describes a dataflow system evaluated in this research, and the
proposed optimization techniques are presented in in Section 3. The results from performance study are discussed
in Section 4, followed by concluding remarks in Section 5.

2 Dataflow for Large Graph Analysis and Testbed

As stated earlier, conventional database processing technologies are not suitable for ingesting and analyzing
complex, massive semantic graphs. It was also shown that the conventional relational databases used as graph
analysis engine do not scale even for graphs of moderate size [10]. The limited scalability is inherent in the
implementation of the relational database management systems architecture that was originally designed for
transaction processing.

Dataflow is a simple and powerful model that is believed to offer a basis for a scalable architecture to replace
the relational databases for graph analysis. In dataflow model, there is no notion of a single locus of control.
The dataflow model describes computation in terms of locally controlled events where each event corresponds
to the firing of an actor [13]. An actor can be considered as a function that processes the input data. An actor
fires and starts its operation when all the inputs it requires become available. In a dataflow execution, many
actors usually fire simultaneously, capacitating data parallelism. This inherent data parallelism facilitates the
development of parallel data management system that can process different portions of data simultaneously in
the most scalable and efficient manner. In addition, the dataflow model provides users with a large degree of
flexibility that allows them to perform low-level query optimization, which is largely left to the SQL compiler in
the relational database systems.

In this research, we rely on a dataflow system called data analytics supercomputer (DAS) [12] as a testbed.
DAS is a dataflow system based on the active disk architecture [18]. Regardless of the algorithm used or the
entity being processed in a semantic graph analysis, the analysis requires that all the records be compared to each
and every one of the other records in worst case. There are basically two approaches to solve this problem. In a
typical n-tier architectures, the data is stored at a relational database system and is retrieved to the middle-tier
on which the actual computation is performed. This approach does not scale for large data sets as moving a
large amount of data can be significant performance bottleneck. The DAS system, on the other hand, brings the
computation to the data that is stored on a distributed parallel computer.

Hardware-wise, the DAS system can operate virtually on any commodity clusters. The testbed at LLNL
consists of 40 Sun Fire X2100 servers, where each node in the testbed has a dual-core AMD Opteron processor
running on 2.6 GHz with 4 GB of memory and 400 GB of disk space. The DAS boosts the performance via using
innovative software that controls multiple nodes so that they act as one, hence, optimizing computations. User
queries are implemented in a custom dataflow definition language, which simplifies the complexity associated with
parallel processing by allowing applications to be implicitly executed on data in parallel. The user queries are
precompiled before being distributed to the individual nodes for execution, to reduce inefficiencies and increase
processing speed and scalability. The details of the design and usage of the system is further articulated in [1, 2].

3 Optimization Techniques for Parallel Dataflow Systems

One of the main goals of this research is to develop query optimization framework that can be generally applied
to the optimization of user queries, especially graph analysis queries, to boost their performance on dataflow
systems. The proposed optimization methods are described in this section. The contributions from these methods
are two-fold. First, any combinations of these methods can be collectively used to optimize queries without any
interference from each other that may cause negative performance effect, since they are complementary and
mutually exclusive. A related advantage of this property is that the query optimization process can be easily
automated by applying the proposed optimization techniques algorithmically. This automatic query optimization
capability would be particularly useful when user queries are constructed using a graph query language [3, 9], in



which the queries are optimized by a compiler. Second, the proposed optimization methods can provide query
writers with a set of guidelines to write efficient and scalable graph analysis applications. Although the methods
proposed here are for the graphs whose the vertices and edges are stored in tables, a primary data structure to
store data on the DAS system, they are simple and general enough to be applied to other dataflow architectures.

3.1 Column Reduction

The column reduction basically concerns with reducing the number of columns in tables. This includes con-
structing virtual tables that contain only those columns that are needed for processing a given query. This
also involves generating intermediate results that contain only those columns that will be used in subsequent
operations. The column reduction obviously improves the performance of user queries by reducing the volume
of data to be stored in disks, reducing the disk I/O time on each local node. More importantly, the reduction
in the amount of the data to be processed can significantly reduce data transfers between nodes in a distributed
environment and thus potentially expensive inter-node communication time.

3.2 Row Reduction

The row reduction concerns with reducing the number of rows in the tables. The rows in a table can be reduced
in a number of different ways. The first method is to eliminate any duplicate rows. In fact, this approach works
better if it is applied after the column reduction optimization, because rows that contain different column values
in a table may become identical after removing some of the columns. Another viable and effective approach that
can be used when a given query has certain constraint conditions is to filter out the rows that do not satisfy
the constraints. To be fully effective, the constraint-based row reduction should to be performed in prior to
the execution of (usually high-cost) data manipulation operation such as JOIN that the constraints are part of.
Alternatively, when no constraints are present in the query, data in the tables can be reorganized in such a way
that the number of rows in the tables is reduced.

Just as in the column reduction, the row reduction benefits from the reduced I/O and communication time
enabled by the reduction in the overall volume of data. The row reduction technique is very effective in optimizing
large graph queries, since reducing the number of rows in tables can significantly improve the performance of the
JOIN operation, which is the most commonly invoked operation by a majority of graph analysis algorithms.

3.3 Data Distribution for Localizing Operation

Data distribution can have a significant impact on the performance and scalability of applications running on
any distributed system. The well-balanced distribution of data is even more critical to scaling graph queries to
very large graphs on a distributed parallel machine, because the load imbalance created by a data skew can make
overloaded nodes to dominate the overall performance.

With this optimization technique, we extend the idea of data distribution further. The idea here is to distribute
the data in such a way that not only the load imposed on node is relatively well-balanced, but also subsequent
operations can be performed using only the local data stored in each node, eliminating the need for costly
inter-node transmission of potentially large volume of data. The distribution of the data to enable the localized
operation while assuring the correctness of the queries requires thorough understanding of data. Further, it
may be necessary to redistribute the intermediate result sets continuously in order to keep the operations to
be performed on the local data. However, it has been observed that the performance gain obtained by the
redistribution of data for enabling the localized data manipulation operations outweighs the redistribution cost
for most queries.

In case when the cost of distributing entire data is larger than the performance gain, we can still benefit
from the distribution of data using some of the light weight operations. A classic use case of the light weight
operation is when joining a small table with a much larger table, where light weight join first copying the small
table to all the nodes where the large table is stored and then performs local joins. That is, having a local copy
of the small table available on each node allows avoiding the transmission of usually large intermediate results
and can improve the performance. Sorting data before executing certain operations is another good example of
light weight operation.

3.4 Data Preparation

Optimization via data preparation refers to reorganizing data a priori to the execution of a query to ensure the
fast execution of the query. The restructuring can involve adding, deleting, and combining the columns and
rows of existing tables. In one extreme, we can construct a hierarchical database by merging set of tables into a



single table that contains the combined data in a hierarchal form. The resulting hierarchical representation of
the graph can reduce query response time drastically for certain types of graph queries than the tabular form
commonly used by relational databases.

In most cases, however, the optimization via data preparation is practical only when the target queries
are known in advance or the tables are small, since dynamically restructuring large data set can be costly.
Nevertheless, preparing data in a form that is ideal for target queries is a viable and effective optimization
technique. Preparing a graph in adjacent list stored in a hierarchical form for graph searches is a good example
of this optimization technique.

4 Results from Performance Studies

We have measured the effectiveness of the query optimization techniques for dataflow systems. The performance
of a suite of benchmark queries that are optimized by applying some of the optimization methods is measured
and compared to that of a state-of-art parallel relational database machine. The results are reported in this
section.

4.1 Experimental Environment

A real-world semantic graph constructed from the PubMed data [20], which contains information on articles
published in medical journals such as title, authors, keywords, and abstract, is used in this performance study.
The raw PubMed data is scanned first to extract the entities and the relationship between the entities, and then
the semantic graph is created as defined by a given ontology. The constructed PubMed graph has about 30
million vertices and 540 million edges. A subgraph with about 1 million vertices is also prepared by sampling
the full-scale PubMed graph for studying the performance of smaller systems.

We used a suite of graph queries as benchmarks that were designed to represent a wide spectrum of complex
queries [10, 21]. These benchmarks are salient, not only because they represent those queries that information
analysts are likely to issue in their data analysis operation but also because they serve as an excellent tool to
measure the scalability of a system as they tend to generate a large volume of intermediate results to push the
system’s capability to its limit.

The benchmarks consist of two types of graph queries: subgraph pattern matching and graph search. Given a
semantic graph and a template graph (also known as a pattern graph), a subgraph pattern matching attempts
to find all the instances of subgraphs in the semantic graph that match the given template. Graph search query
is used to find paths between two vertices in the graph. The graph benchmarks are depicted in Figure 1.

Each pattern query is implemented by first decomposing input pattern into a set of smaller patterns, often in
the form of path queries. The instances that match the subqueries are then joined to produce intermediate results
that contain those instances of patterns present in the subqueries. The intermediate data (and any resulting
from subsequent joins) are repeatedly joined in a hierarchical fashion to find all the instances of subgraphs that
match the given pattern. Due to this optimization approach, executing pattern queries invokes a sequence of
join operations, many of which are self-joins. Readers should refer [10] for more details on the implementation
of the graph pattern queries.

The first query (Query 1) is a highly constrained form of pattern query. This query attempts to find all the
authors who published articles in four specific dates. This query is first broken into four smaller patterns, each
of which represents the instances of an author-to-date path. The four sets of instances are joined later to find
authors who are found in the all four groups. The second query (Query 2) shown in Figure 1.b finds authors
who have published two articles in the same journal. Similarly to the Query 1, all the instances of authors
who have published any articles in any journals are detected first and then a self-join is performed to find a set
of authors who are found in the both sets of instances. Figure 1.c depicts a pattern for the authors who have
published four articles in a journal called Physical Review Letters (Query 3). As the first step, a path query for all
the authors who have published articles in the particular journal is performed. Successive joins of intermediate
results will eventually return a set of authors who published more than four papers in the journal. Query 4
shown in Figure 1.d finds two authors who co-authored two or more papers. For this query, all the instances of
two authors who co-authored any papers are identified first followed by a self-join. Figure 1.e presents Query 5
that represents sophisticated queries in which specific types of edges are excluded. Here, the Query 5 finds the
instances of two articles that do and do not have associated grants, respectively.

The graph search queries used in the experiments are based on conventional breadth-first search (BFS)
algorithm. Though simple, the BFS algorithm is an important benchmark, because the BFS is a fundamental
algorithm that is used by a wide range of common graph mining algorithms and the execution of BFS algorithm
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Figure 1: A suite of graph benchmarks used in the performance study. It consists of five pattern queries
and two search queries

exhibits random memory access behavior that is shared by majority of graph algorithms. Two types of BFS
algorithms are examined in this paper: uni- and bi-directional BFS.

The uni-directional BFS is the ordinary BFS algorithm, which finds the shortest path between given source
and destination vertices. The bi-directional BFS is a variation of the uni-directional BFS, where two separate
breadth-first searches start from the source and destination vertices. These searches continue until a common
vertex that can be reached from both ends is found or all the vertices in the graph are visited. Naturally, this
search is more efficient than the uni-directional search, because the length of search paths is about half of that
of the uni-directional search. Figure 1.f describes the bi-directional BFS algorithm pictorially.

4.2 Performance Evaluation Results

Figure 2 presents the effect of the proposed optimization methods on the query performance. In this study,
only three optimization methods, column reduction (CR), row reduction (RR), and distribution/localization
(DIST/LOC), are considered mainly because the benchmarks considered here do not have a rich set of constraints
of which other proposed optimization techniques can take advantage. The three optimization methods are
gradually applied to the baseline (unoptimized) queries in order to evaluate the effect of each optimization
technique individually. Hence, the data points for DIST/LOC in the graphs correspond to the performance of
fully optimized queries.

As shown in the figure, the simple column reduction can improve the performance significantly. Its impact is
more evident for the Queries 2 and 3 in Figure 2.b, as these queries are more complicated and generate larger
intermediate results than others. In contrast, Query 1 contains constraints that its baseline implementation can
take advantage of to filter out a large number of records prior to join operations, and therefore, the effect of the
column reduction is minimal as shown in Figure 2.b. The performance impact of the column reduction for Query
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Figure 2: Measuring the effect of proposed optimization methods using PubMed graphs. A smaller
PubMed graph with 1 million vertices and a full-scale PubMed graph with 30 million vertices are used
in this experiment. Each method is gradually applied in optimizing the target queries.

3 is not clear in Figure 2.a, because a smaller PubMed graph is used in the experiment.
The number of rows is reduced in these experiments mainly by creating a separate table for each sub-query

so that the sub-queries can be run on smaller tables. In Figure 2, the effect of the row reduction varies to great
extent largely depending on the queries, since some queries benefit from this optimization as it offers smaller
tables for fast joins, whereas for others the number of rows reduced is too small to have significant performance
impact.

A primary goal of the distribution for localization is to reduce the overall communication time spent in join
operations by enabling local joins. It was observed that this technique improves the performance of all the queries
examined in the experiments, because this technique basically can eliminate any data skews. This optimization
technique not only can improve the performance, but sometimes it enables the execution of queries on large data
sets. For example, the Query 5 on the 30 million-vertex PubMed graph could not be run on DAS even with
the column and row reductions due to the large skew of the data. Elimination of the data skew through data
redistribution enabled the execution of the query. It is clear that the effect of the proposed optimization methods
varies to great extent depending on the query and data. However, the fact that using any combinations of the
proposed methods does not degrade performance as shown in Figure 2 suggests that users should exercise these
optimization techniques when writing a query.

Table 1 presents uni- and bi-directional BFS search performance on the DAS system. Full-scale PubMed graph
is searched in this experiment. Each search is conducted to find the shortest path between two randomly chosen
vertices. The search performance is obtained from the average of 20 searchers. The performance of optimized
and unoptimized searches is compared in the table. As Table 1 indicates, the optimized BFS algorithms achieved
2.4X and 3.6X speedups over their unoptimized counterparts. The improvement in the search performance is
enabled by optimizing the search algorithms via data preparation. Here, input graph represented as an edge table
is rearranged to form an adjacency list, where each entry consists of a source vertex and its adjacent vertices. In a
BFS search, an expansion from the current level to the next involves finding a set of vertices that can be reached
from the vertices at the current level and requires a self-join of the input edge list. Conversion to adjacency list
reduces the amount of data to be joined, resulting in significant reduction in the join time.

The performance of the optimized queries on the dataflow testbed is compared to that of equivalent SQL
queries on a single-node Oracle RDBMS server in Table 2. The smaller PubMed graph is used here, due to
the limited hardware resources on the Oracle server. Queries for the DAS system are optimized via applying
combinations of applicable optimization methods proposed in this paper. As Table 2 shows, the optimized

Unoptimized Optimized
Uni-directional BFS 287.926 120.359
Bi-directional BFS 204.902 56.431

Table 1: Performance of uni- and bi-directional BFS searches on the DAS system (in seconds). Full-scale
PubMed graph with 30 million vertices is used in this experiment.



DAS RDBMS Speedup/Node
Query 1 0.343 3 0.44
Query 2 3.182 1014 15.93
Query 3 0.573 21.8 1.90
Query 4 1.742 387 11.11
Query 5 4.575 282 3.08

Table 2: Comparing the performance of queries on DAS and Oracle RDBMS for 1 million-vertex PubMed
graph (in seconds).

DAS Netezza Speedup/Node
Query 1 9.422 27.3 7.82
Query 2 142.099 834.47 15.86
Query 3 469.511 15392.96 88.52
Query 4 37.803 741.42 52.95
Query 5 44.6 496.48 30.06

Table 3: Comparing the performance of queries on DAS and Oracle RDBMS for 30 million-vertex
PubMed graph (in seconds).

queries on the dataflow system outperform corresponding SQL queries on Oracle by orders of magnitude in most
cases, achieving as much as 16X speedup per node. Such performance improvement can be attributed to the
fact that the optimization of the queries via proposed techniques ensures small intermediate results and minimal
communication. Highly optimized underlying query execution engine of the DAS system also contributes to the
fast execution of the queries.

The performance of the same set of queries for the large-scale PubMed graph on the DAS system and a 54-
node Netezza Performance Server (NPS), a specialized active-disk based distributed relational data management
system, is compared in Table 3. The SQL queries are optimized by applying the column reduction for the fairer
comparison. We relied on the Netezza’s SQL compiler for the rest of optimization, As the table shows, the DAS
system achieves almost two orders of magnitude speedup per node over the Netezza system. The performance
improvement is most noticeable for the Queries 3 and 4. This is because these queries consider all the possible
combinations of intermediate results, easily leading to combinatorial explosion of data. Since the amount of
the intermediate data to be joined is reduced to a great extent by the distribution/localization method for the
dataflow queries, the negative effect of the combinatorial explosion is small on DAS.

5 Concluding Remarks

In this work, the feasibility of using dataflow systems as a large-scale semantic graph analysis engine is studied.
A general query optimization framework for parallel dataflow systems is also proposed and applied to optimizing
a suite of graph query benchmarks. The performance of the optimized queries measured on an actual parallel
dataflow system using a large-scale semantic graph validates the effectiveness of the proposed techniques. Fur-
thermore, the comparison of the optimized query performance to that of equivalent SQL queries on a high-end
parallel relational database machine shows that we can achieve orders of magnitude improvement in query per-
formance on dataflow systems over state-of-art relational database systems, verifying that the dataflow machines
can be a viable and scalable alternative to run large complex graph queries.
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